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Coordination Dynamics in Multi-human
Multi-robot Teams

Tariq Iqbal1 and Laurel D. Riek1

Abstract—As robots enter human environments, they will
be expected to collaborate and coordinate their actions with
people. In order for robots to become more fluent at this,
particularly in groups, robots must be able to recognize,
understand, and anticipate coordinated human activities.
However, how robots engage in this process can influence
the dynamics of the team, particularly in multi-human,
multi-robot situations. In this paper, we investigate how the
presence of robots affects group coordination when both the
anticipation algorithms they employ and their number (single
robot or multi-robot) vary. Our results suggest that group
coordination is significantly affected when a robot joins a
human-only group, and is further affected when a second
robot joins the group and employs a different anticipation
algorithm from the other robot. These findings suggest that
heterogeneous behavior of robots in a multi-human group
can play a major role in how group coordination dynamics
stabilize (or fail to), and may have implications for how we
design future human-robot teams.

Index Terms—Social Human-Robot Interaction; Cognitive
Human-Robot Interaction; Gesture, Posture and Facial Ex-
pressions

I. INTRODUCTION

HUMANS interact in groups in many situations in
their daily life. In group situations, activities per-

formed by a group member continually influences the
activity of other group members [1]. These influences
can lead to intentional or unintentional coordination of
the movements of the humans in a group. An intentional
coordination of movements may be observed in cooper-
ative group tasks, such as when people dance together;
whereas unintentional coordination may occur in non-
cooperative tasks, like people walking in a group [2], [3].
Humans are skilled at coordinating their movements in
group situations.

Along with technological advancements, robots are now
becoming our partners in many activities, from dexterous
factory jobs to assisted living. While working alongside
humans, a robot might encounter people performing vari-
ous social actions, and engaging in group activities, such
as exercise, or performing synchronous movements in
therapy [4]–[7]. Thus, robots need the ability to interpret,
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Fig. 1. In the study, three participants danced together across three
conditions, A) humans alone, B) humans with one robot, and C) humans
with two robots. In B) and C), there were two variations, where different
anticipation algorithms were executed on the robot.

anticipate, and adapt to human actions to synthesize fluent
interaction with humans accordingly.

There are many studies in the literature focused on
improving a robot’s motion through the interpretation of
human actions and activities [8]–[11]. These include a
wide range of behaviors, from gross motor motion (e.g.,
lifting stuff, walking together) to dexterous manipulation
tasks (e.g., stacking objects). All of these experiments
show successful results in recognizing human activities,
either when the humans performed as individuals or with
the collaboration of another human.

Recent work in robotics has focused on developing
methods which can predict human activity to make in-
teraction more fluent [12], [13]. For example, Hawkins
et al. [14] developed a probabilistic model to determine
an appropriate action for an assistive robot to take when
providing parts during an assembly task. Hoffman et al.
[15] proposed an adaptive action selection mechanism for
a robot to make anticipatory decisions based on the confi-
dence of their validity and relative risks. Their model was
validated through an experiment, and the results suggested
an improvement in joint task efficiency compared to a
purely reactive model.

Many approaches have been taken to model inter-human
joint action in groups, which has also been extended to
human-robot synchronous group coordination [16]–[24].
For example, Mörtl et al. proposed a step-wise approach
to model the inter-human movement synchronization in
a goal directed action task [25]. Iqbal and Riek [26]
proposed an event based method to measure coordination
in human groups, which was later extended to human-
robot groups [27], [28].

Lorenz et al. [29] investigated movement coordination
in a human-human and human-robot team. The study
involved both a human-human and human-robot dyad
tapping on two positions on a table at certain times. The
authors explored whether goal-directed, but unintentional
coordination of movement occurred during these interac-
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tions. Their results suggested that humans synchronized
their movements with the movements of the robots.

While this prior work aims to enable robots to act
appropriately in a group, recent work has shown that
this may not be enough. Richardson et al. [30] found
that people show a higher degree of coordination of their
actions when they were visually coupled while interacting
in a group. The results of their study also suggested that
solely verbal interaction was an insufficient medium for
unintentional coordination to occur during an interaction.
Moreover, verbal interaction did not enhance the uninten-
tional coordination that emerged during visual interaction.
Similarly, Coey et al. [2] investigated the relationship
between the stability intrapersonal coordination and the
emergence of the spontaneous interpersonal coordination.

During human-robot group scenarios, the effect of vi-
sual and auditory feedback from robots has not been well
explored beyond a human-robot dyad. However, groups are
a common domain in which humans and robots will likely
interact in the future, and how human and robot group
members influence one another may prove important.
Therefore, it is important to look deeply into human-robot
group dynamics, with an eye toward how robots affect
human group members’ behaviors when they encounter
intelligent robots working alongside them.

During the course of our research, we designed several
methods to enable robots to autonomously engage with
human teams, by leveraging concepts from non-linear dy-
namics and neuroscience (see [26], [28], [31]). However,
we are interested in exploring what happens when multiple
robots interact with multiple people simultaneously, and
how they affects teaming behaviors. Furthermore, what
happens to the team when those robots are running the
same or different motion anticipation algorithms?

To address these research questions, we have designed
a human-robot teaming scenario, where one or two
autonomous mobile robots observe a group of human
dancers, and then successfully and contingently coor-
dinates their movements to join the team. The robots
employed two methods to coordinate their movements
with the human group, one which takes team dynamics
into account and one which does not.

Previously, we compared the two anticipation algo-
rithms presented here on several dimensions, such as how
appropriate the timing of events were by the robot. We
found that when the robot took group dynamics into
account, it performed more appropriately with the rest of
the group. In this work, we want to explore how both the
human and whole group dynamics changed within multi-
robot scenarios.

II. ANTICIPATION METHODS

As the testbed for this experiment, we designed a
synchronous dance scenario where a heterogenous team of
people and robots could coordinate their motion in real-
time. In concert with an experienced dancer, we chore-
ographed an iterative dance routine to the song Smooth
Criminal by Michael Jackson, which is in 4/4 time. There

are four iterations in a dance session, and is performed
cyclically in a counter-clockwise manner. The group per-
forms this dance facing each of the cardinal directions
(North, West, South, and East) during an iteration. Each
iteration includes the dancers taking the following steps
in order: move forward and backward twice, clap, and a
counter-clockwise 90-degree turn [28].

We employed two event anticipation methods for
the robots to move within a human-robot group:
SIA (synchronization-index based anticipation) and ECA
(event cluster based anticipation) [28]. (See Fig 2).

A. Synchronization Index Based Anticipation (SIA)
The SIA method depends on the internal dynamics of

the group. The main idea behind this method is that for
a given iteration, the participant who moves the most
synchronously with the other dancers is good for the robots
to follow, so that they are coordinated with the rest of the
team. To generate future actions for the robot using SIA,
we measured the most synchronous person of the group
at the beginning of each iteration [28].

We can express task-level events associated with two
dancers with time series xn and yn respectively, where
each time series has N samples and n = 1 . . . N . Suppose
mx and my are the number of events occurring in time
series x and y respectively. The events of both series are
denoted by ex(i) ∈ E and ey(j) ∈ E, where, i = 1 . . .mx,
j = 1 . . .my , and E is the set of all events. The event
times on both time series are txi and tyj (i = 1 . . .mx,
j = 1 . . .my) respectively [26].

In the case of synchronous dance, the dancers should
perform the movements roughly at the same time, or
within a time lag ±τ [26], [28]. Now, suppose cτ (x|y)
denotes the number of times a single type of event e ∈ E
appear in time series x shortly after it appears in time
series y. Here, cτ (x|y) =

∑mx

i

∑my

j Jτij , where, Jτij = 1,
if 0 < txi − t

y
j < τ , = 0.5, if txi = tyj , or = 0, otherwise.

Now, Qτ (e) represents the synchronization of events
in two time series, where we are only considering a
single type of event e in both time series [26]. From
cτ (x|y) and cτ (y|x), we can calculate Qτ (e) as, Qτ (e) =
(cτ (x|y) + cτ (y|x))/(√mxmy).

Now, suppose, there are n types of events
{e1, e2, . . . , en} ∈ E(n), where E(n) is the set of
all types of events, and mx(ei) be the number of events
of type ei occurring in the time series x [26], [28]. So,
the overall synchronization of for multiple types of events
in time series x and y of that pair is:

∀ei ∈ E(n) : Qxyτ =

∑
[Qτ (ei)× [mx(ei) +my(ei)]]∑

[mx(ei) +my(ei)]
(1)

After measuring the pairwise synchronization index, we
built a directed weighted graph from these indices, called
a group topology graph (GTG), where each time series
is represented by a vertex [26], [28]. We measured the
individual synchronization index of series si as:

Iτ (si) =

∑
j=1,...,H, j 6=iQ

sisj
τ × f(si, sj)∑

j=1,...,H, j 6=i f(si, sj)
(2)
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Fig. 2. Two anticipation methods. (L) Synchronization Index Based Anticipation (SIA), (R) Event Cluster Based Anticipation (ECA) method [28].

Here, f(si, sj) = 1, iff edge(si, sj) ∈ GTG, or = 0,
otherwise.

A high individual synchronization index of a dancer
indicates close synchronization with the other group mem-
bers. Thus, the person with the highest individual synchro-
nization index during an iteration is considered the most
synchronous person of the group [28].

B. Event Cluster-Based Anticipation Method (ECA)
ECA was designed to serve as a comprable algorithm

which does not take group dynamics into account, is
theoretically simple, and is easy to implement. The core
idea of ECA is that it takes the average timing of events
during one iteration to predict the timing of those same
events for the next iteration [28].

For example, given a single event e, ECA calcu-
lates the timing of the event performed by three human
participants, i.e., t(dancer1(itri), e), t(dancer2(itri), e),
t(dancer3(itri), e). Here, t represents the timing of an
event, and itri represents the iteration i. Then, for each
cluster of similar events occurred within a time threshold
ε, ECA calculates the average time of all events and
used that time as the event timing for the next iteration.
These events and the times were the predicted events
and timing for the next iteration of the dance for the
robot. Thus, t(robot(itr(i+1)), e) = (t(dancer1(itri), e)+
t(dancer2(itri), e) + t(dancer3(itri), e))/3 [28].

C. Comparison Between the Methods
In our previous work, we thoroughly evaluated the per-

formance and the accuracy of these anticipation methods
in the context of a human-robot dancing. We performed a
set of experiments where a robot employed one of these
algorithms, and danced synchronously with three people
[28]. The goal of that study was to develop these methods
and to investigate their differences in multiple dimensions.

The results of that study indicated that the human-
robot group danced more synchronously when the SIA
was, in contrast to ECA. We also calculated the timing
appropriateness measure during that study. The results
also suggested that SIA allowed the robot to move more
coherently and appropriate in time, when compared to
ECA. (for a detailed analysis, please check [28]).

After a thorough evaluation of these anticipation meth-
ods, we found these two methods are suitable for human-
robot teaming scenarios. We also found these methods are

appropriate to investigate our research questions in this
work, as the methods are different enough in the way
how they interact with a group. Thus, we are employing
these methods on the robots during this study. However,
the study design and the research questions of this paper
are different from our previous investigation.

III. DATA ACQUISITION

In the setup, four clients with Microsoft Kinect v.2
sensors captured team motion, and detected dance events
in real-time. A server managed the clients and maintained
a consistent time across them and the robots [28].

Each client extracted five high-level events from each
participant’s movements during the dance: start moving
forward, stop moving forward, start moving backward,
stop moving backward, and clap. (The detection process
is described in [28]). After receiving client events, the
server used the anticipation methods described in Sec-
tion II to generate appropriate movement commands for
the robot. These commands included: move forward, move
backward, stop, and turn.

The server translated the clap commands into rotation
commands for the robot, since the robot cannot clap.
Each iteration ended with a synchronous clap by the
participants. The last participant clap time was taken as
the end time of the current iteration, and the starting time
of the next iteration [28].

IV. EXPERIMENTS

To explore the effects of visual and auditory feedback
from the robots during an intentional coordination task,
we physically incorporated robot(s) in the group in such a
way that participants were able to hear the robot’s motors
at all times, and view a robot during some iterations
(See Fig 1). This scenario provided the opportunity to
investigate the effect of robot motion (including auditory,
and visual feedback) on the group’s coordination.

We also provided an external rhythmic signal to partic-
ipants to help them to maintain a consistent, synchronized
tempo during the dance. Participants were instructed to
maintain awareness of the other participants’ and robots’
movements, and to dance synchronously as a group.

We recruited a total of seven groups for our main
study, with three people per group. Data of one group
were excluded due to the robot losing connectivity with
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the server, so here we report the results from six groups
(18 participants in total). 11 participants were women, 7
were men. Their average age was 24.7 years (s.d. = 4.5
years), and the majority were undergraduate and graduate
students. Participants were recruited by word-of-mouth.
Upon scheduling a time slot, participants were randomly
assigned to join a group with two others. Each participant
was compensated with a $10 gift card.

After giving informed consent, participants viewed an
instructional video of the choreographed dance and the
experimenters explained the different movements. The par-
ticipants then had time to practice the dance movements as
a group as many times as they wanted. During the practice
session, the robot did not dance with them. Following
the practice session, the group participated in six dance
sessions, in four phases.

1) Phase 0: Only the humans participated in the dance.
2) Phase 1: One robot joined the group. The dancers

participated in two dance sessions, where the robot
moved using either ECA then SIA, or SIA then
ECA. The order was counterbalanced to avoid bias
within this phase.

3) Phase 2: Two robots joined the dance with the
humans. The dancers also participated in two dance
sessions, with either SIA or ECA methods control-
ling the robot’s movements. The order was counter-
balanced to avoid bias within this phase.

4) Phase 3: Two robots moved with the humans.
However, movements of one robot were generated
using ECA, and movements of the other robot were
generated using SIA. The anticipation methods for
the robots were counterbalanced to avoid bias.

We controlled for several factors relating to how partic-
ipants altered their behaviors relative to the robots’ motion
in several ways. First, we provided an external rhythmic
signal to the human participants to help them maintain a
consistent tempo. Second, we deliberately choreographed
an easy dance (walking, turning, and clapping), and gave
substantial practice time before the experiment began.
This enabled participants to develop their muscle memory,
so that they would not be easily distracted during the
experiment. Third, because we had six counterbalanced
conditions (i.e., random ordering per phase for each par-
ticipant group), any effects relating to the robots being
distracting will be greatly lessened.

During all sessions, the clients recorded depth, infrared,
and skeletal data of the participants, and the server logged
all event and timing data. A single camera mounted on a
tripod recorded standard RGB video of the experiment for
manual analysis purposes only. How the server handled
multiple robots is different than our previous implementa-
tion in [28]. In this implementation, the server generated
both prediction timings for the robots, but sending only
the prediction timings depending on the anticipation algo-
rithms that the robot was using in the cases of Phase 3.

Following each session, participants completed a short
questionnaire asking them to rate in a discrete visual scale

describing how well-synchronized the group was during
that dance session.

We used two Turtlebot v.2 robots in our experiments.
Those are approximately 2 feet tall, and run the Robot
Operating System (ROS) (Hydro) on Ubuntu (v 12.04).

V. ANALYSIS AND RESULTS

To address the first two research questions, we need
to measure how well coordinated the human participants’
movements are when we consider them separate from
the group, without the robots. In order to address the
research questions three and four, we need to measure how
well coordinated the whole group are including both the
humans and the robots. Here, we describe the method to
measure the degree of synchronization among the group.

During the experiments, the humans and the robots
physically moved very close in proximity. Therefore, we
assumed that each group members influenced all other
group members, as well as everyone was influenced by all
other group members. Thus, each member was considered
connected with all other members in the GTG [28].

However, when SIA method was used, the robot only
followed the most synchronous person of the previous
iteration. Thus, we only took the pairwise synchronization
index between the robot and that person into account
while building the GTG and calculating the individual
synchronization index of the robot for that iteration [28].

From the GTG, we measured the connectivity value
(CV ) and the overall group synchronization index (Gτ ),
both by including and by excluding the robot [28].

CV (si) =

∑
j=1,...,H, j 6=i f(si, sj)

H − 1
(3)

Gτ =

∑
i=1,...,H Iτ (si)× CV (si)

H
(4)

The value of τ allowed us to detect two synchronous
events when the events happened within τ in two time
series. From the pilot studies, we found that even when
the humans performed their actions synchronously, the lag
between their actions ranged from 0.25-0.6 sec. So, to be
conservative, we selected τ as 0.25 sec. The events of the
robots were detected from the timestamped odometric data
from the robots [28].

To address our research questions, we measured both the
group synchronization index only considering the human
participants (GSI(H)) across all experimental sessions, as
well as the group synchronization index of the whole
group (GSI(G)). First, we analyze the effect on the group
synchronization index only considering the human par-
ticipants for different experimental scenarios. Then, we
analyze the effect on the whole group synchronization
index for different experimental scenarios.

1) Effect on the GSI(H) values: We conducted an
one-way repeated-measures ANOVA with the Bonferroni
correction on the human group synchronization index
(GSI(H)) values of all six experimental sessions, consist-
ing of one session of Phase 0, two sessions of Phase 1,
two sessions of Phase 2, and one session of Phase 3.
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Fig. 3. The group synchronization index (GSI) values for different group conditions along x-axis, where 3H means 3 humans, 1R means 1 robot,
2R means 2 robots, SIA means synchronization index based anticipation, and ECA means event cluster based anticipation. The graphs on the left
shows the GSI values of the human group, and the right shows the GSI values of the whole group. The significant difference in GSI values between
groups are shown in * (* = p < 0.05, ** = p < 0.01, and *** = p < 0.001)

Mauchly’s test indicated that the assumption of spheric-
ity had been met, χ2(14) = 9.38, p > 0.05. One-way
repeated-measures ANOVA with the Bonferroni correction
indicated that the human group synchronization indices
were not significantly different across all experimental
conditions, F(5, 115) = 1.37, p > 0.05, ω2 = 0.03. These
results suggest that the human group synchronization
index was not affected by adding one or more robot as
a performer to the group, irrespective of the anticipation
algorithms. Fig 3 shows errors bars of GSI(H) values
across all experimental conditions.

2) Effect on the GSI(G) values: We conducted an
one-way repeated-measures ANOVA with the Bonferroni
correction on the whole group synchronization index
(GSI(G)) values of all six experimental sessions, consist-
ing of one session of Phase 0, two sessions of Phase 1,
two sessions of Phase 2, and one session of Phase 3.

Mauchly’s test indicated that the assumption of spheric-
ity had been met, χ2(14) = 18.56, p > 0.05. One-way
repeated-measures ANOVA with the Bonferroni correction
indicated that the group synchronization indices (GSI(G))
across the experimental conditions were significantly dif-
ferent, F(5, 115) = 22.59, p < 0.05, ω2 = 0.21.

These results also suggest that the GSI(G) values of
the Session1 were significantly different than all other
experimental conditions (for all conditions p < 0.001).
This indicates that there is a change in the degree of group
synchronization when one or more robots joined the group,
independent of the anticipation algorithms.

The results also indicate that the GSI(G) values of the
sessions of Phase1 were not significantly different than
the sessions of Phase2 (for all conditions p > 0.05).
It suggests that there is no significant effect on the GSI
values when we add an additional robot to a three human
and one robot group of the same robot behavior, regardless
of the robot anticipation algorithms.

However, the results also indicate that the GSI(G) values
of the sessions of Phase1 were significantly different
than the session of Phase3 (p < 0.05 for SIA method
of Phase1 and Phase3, and p < 0.001 for ECA method

of Phase1 and Phase3). This suggests that there is a
significant effect on the GSI values when we add an
additional robot with different behavior to the group,
regardless of the robot anticipation algorithms.

Our results also indicate that the GSI(G) values of
the session of Phase2 when the SIA algorithm was
used were not significantly different than the session
of Phase3 (p > 0.05). However, the GSI(G) values of
the session of Phase2 when the ECA algorithm was
used were significantly different than the GSI values of
the session of Phase3 (p < 0.01). This suggests that
there is no significant effect on the GSI values when the
both robots were performing SIA and when the robots
performed a mixed behavior. On the other hand, there
is a significant effect on the GSI values when the both
of the robots were performing ECA and when the robots
performed a mixed behavior. Fig 3 shows the errors bars
of GSI(G) values across all experimental conditions.

VI. DISCUSSION

To our knowledge, intentional coordination tasks have
not been explored in the context of multi-human, multi-
robot group interaction scenarios. Our study explored how
robots might change this dynamic in intentional group
coordination. Our results indicate that heteronegenous be-
havior of robots in a multi-human multi-robot group have a
significant impact on the overall group coordination. This
is an important finding, because this indicates that the way
the robots move in a multi-human multi-robot group may
directly impact the dynamics of the whole group, which
raises an important concern about how we must design
robots to perform along with humans in coordination to
achieve common goals.

Our statistical analysis indicates that the addition of
a second robot with heterogeneous behavior (Phase 3)
significantly reduces the group coordination over a single
robot condition (Phase 1). Similarly, the analysis suggests
that an addition of a robot to the human-only group
also significantly reduces the group coordination over the
human-only group (Phase 1 vs. Phase 0). This is an
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important finding, because the addition of a robot with
same behavior does not change the group coordination
significantly (Phase 1 vs Phase 2, for both algorithms).
These results might suggest that an addition of a robot with
heterogeneous behavior to a group significantly reduces
the overall group coordination, and might be an important
indicator of human-robot group dynamics.

Overall, these results indicate that the group coor-
dination is significantly affected when a robot joins a
human-only group, and is further affected when a second
robot joins the group and employs a different anticipation
algorithm from the other robot. However, these effects
were not found to be significant when the two robots
employed the same anticipation algorithm.

Although participants were overall more synchronous
by themselves than with the entire human-robot team, this
does not imply that the team was grossly asynchronous,
and the robot did not have influence on the human
movements. For example, suppose that a robot moved
sooner than the participants due to physical factors, such
as sensor noise or actuator issues. When this happens,
it may still influence the human team members to start
moving earlier as well. However, the humans do not
have this issue and are able to maintain consistent, real-
time temporal adaptation among themselves (c.f. [32]),
although the whole human group was deviated from the
original rhythm. This is something we plan to explore in
depth in our future work.

We can also extend our method to work beyond syn-
chronous activities, such as timed but varied collaborative
tasks. For example, a human-robot team working in an
industrial setting has specific sequences of activities to
perform over time, some of which might be independent,
and might not happen synchronously. However, the events
must happen contingently; so we can extend our methods
to these scenarios.

This research may be helpful for others in the robotics
community in exploring novel concepts that affect group
dynamics beyond dyad groups. As a whole, humans have
complex social structures, and it is necessary for robots
to understand these underlying concepts if they are to
become widely accepted. This work also has implications
not only for human-robot interaction, but also for multi-
robot systems research, such as robot swarms.

Building on this foundation, we want to explore the
effect of including multiple types of robots with different
expertise levels in a human-robot group to perform both
intentional and unintentional coordinated movements. We
are also interested to explore how different robot mor-
phologies (like humanoids) might affect group synchrony.
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